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Exercise 1.4.7

For the following problems, determine an equilibrium temperature distribution (if one exists). For
what values of β are there solutions? Explain physically.

(a)
∂u

∂t
=
∂2u

∂x2
+ 1, u(x, 0) = f(x),

∂u

∂x
(0, t) = 1,

∂u

∂x
(L, t) = β

(b)
∂u

∂t
=
∂2u

∂x2
, u(x, 0) = f(x),

∂u

∂x
(0, t) = 1,

∂u

∂x
(L, t) = β

(c)
∂u

∂t
=
∂2u

∂x2
+ x− β, u(x, 0) = f(x),

∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0

Solution

The rod in (a) has constant physical properties and a constant heat source Q = 1. The heat flow
is specified at its ends, and it has an initial temperature distribution u(x, 0) = f(x). The rod in
(b) has constant physical properties and no heat source. The heat flow is specified at its ends,
and it has an initial temperature distribution u(x, 0) = f(x). The rod in (c) has constant physical
properties and a steady heat source Q(x) = x− β. The ends are insulated, and it has an initial
temperature distribution u(x, 0) = f(x).

Part (a)

At equilibrium the temperature does not change in time, so ∂u/∂t vanishes. u is only a function
of x now.

0 =
d2u

dx2
+ 1 → d2u

dx2
= −1

This differential equation can be solved by integrating both sides with respect to x twice. After
the first integration, we get

du

dx
= −x+ C1.

Apply the boundary conditions at x = 0 and x = L to determine C1 and β.

du

dx
(0) = C1 = 1

du

dx
(L) = −L+ C1 = β

In order for there to be an equilibrium temperature distribution, β must be equal to 1− L.

du

dx
= −x+ 1

Integrate both sides with respect to x once more.

u(x) = −x
2

2
+ x+ C2

The final constant can be found by integrating both sides of the PDE over the rod’s length from 0
to L. ˆ L

0

∂u

∂t
dx =

ˆ L

0

(
∂2u

∂x2
+ 1

)
dx
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Bring the time derivative in front of the integral on the left side. It becomes a total derivative
because the definite integral wipes out the x variable. Split up the integral on the right side into
two and evaluate them.

d

dt

ˆ L

0
u(x, t) dx =

ˆ L

0

∂2u

∂x2
dx+

ˆ L

0
dx

=
∂u

∂x

∣∣∣∣L
0

+ L

=
∂u

∂x
(L, t)︸ ︷︷ ︸
= β

− ∂u
∂x

(0, t)︸ ︷︷ ︸
= 1

+L

= β − 1 + L

= 0

Integrate both sides with respect to t.

ˆ L

0
u(x, t) dx = constant

As a result, the integral of u over the rod’s length is the same at any time, including at
equilibrium. ˆ L

0
u(x, 0) dx =

ˆ L

0
u(x,∞) dx = constant

Substitute the prescribed initial condition into the integrand on the left side and the equilibrium
temperature distribution into the right side.

ˆ L

0
f(x) dx =

ˆ L

0

(
−x

2

2
+ x+ C2

)
dx

We now have an equation for C2. Proceed to evaluate the integral and solve for it.

ˆ L

0
f(x) dx = −L

3

6
+
L2

2
+ C2L

So then

C2 =
1

L

[
L3

6
− L2

2
+

ˆ L

0
f(x) dx

]
=
L2

6
− L

2
+

1

L

ˆ L

0
f(x) dx.

Therefore, assuming β = 1− L, the equilibrium temperature distribution is

u(x) = −x
2

2
+ x+

L2

6
− L

2
+

1

L

ˆ L

0
f(x) dx.
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Part (b)

At equilibrium the temperature does not change in time, so ∂u/∂t vanishes. u is only a function
of x now.

0 =
d2u

dx2

This differential equation can be solved by integrating both sides with respect to x twice. After
the first integration, we get

du

dx
= C3.

Apply the boundary conditions at x = 0 and x = L to determine C3 and β.

du

dx
(0) = C3 = 1

du

dx
(L) = C3 = β

In order for there to be an equilibrium temperature distribution, β must be equal to 1.

du

dx
= 1

Integrate both sides with respect to x once more.

u(x) = x+ C4

The final constant can be found by integrating both sides of the PDE over the rod’s length from 0
to L. ˆ L

0

∂u

∂t
dx =

ˆ L

0

∂2u

∂x2
dx

Bring the time derivative in front of the integral on the left side. It becomes a total derivative
because the definite integral wipes out the x variable. Evaluate the right side.

d

dt

ˆ L

0
u(x, t) dx =

∂u

∂x

∣∣∣∣L
0

=
∂u

∂x
(L, t)︸ ︷︷ ︸
= β

− ∂u
∂x

(0, t)︸ ︷︷ ︸
= 1

= β − 1

= 0

Integrate both sides with respect to t.

ˆ L

0
u(x, t) dx = constant

As a result, the integral of u over the rod’s length is the same at any time, including at
equilibrium. ˆ L

0
u(x, 0) dx =

ˆ L

0
u(x,∞) dx = constant
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Substitute the prescribed initial condition into the integrand on the left side and the equilibrium
temperature distribution into the right side.

ˆ L

0
f(x) dx =

ˆ L

0
(x+ C4)dx

We now have an equation for C4. Proceed to evaluate the integral and solve for it.

ˆ L

0
f(x) dx =

L2

2
+ C4L

So then

C4 =
1

L

[
−L

2

2
+

ˆ L

0
f(x) dx

]
= −L

2
+

1

L

ˆ L

0
f(x) dx.

Therefore, assuming β = 1, the equilibrium temperature distribution is

u(x) = x− L

2
+

1

L

ˆ L

0
f(x) dx.

Part (c)

At equilibrium the temperature does not change in time, so ∂u/∂t vanishes. u is only a function
of x now.

0 =
d2u

dx2
+ x− β → d2u

dx2
= β − x

This differential equation can be solved by integrating both sides with respect to x twice. After
the first integration, we get

du

dx
= βx− x2

2
+ C5.

Apply the boundary conditions at x = 0 and x = L to determine C5 and β.

du

dx
(0) = C5 = 0

du

dx
(L) = βL− L2

2
+ C5 = 0 → β =

L

2

In order for there to be an equilibrium temperature distribution, β must be equal to L/2.

du

dx
=
L

2
x− x2

2

Integrate both sides with respect to x once more.

u(x) =
L

4
x2 − x3

6
+ C6

The final constant can be found by integrating both sides of the PDE over the rod’s length from 0
to L. ˆ L

0

∂u

∂t
dx =

ˆ L

0

(
∂2u

∂x2
+ x− β

)
dx
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Bring the time derivative in front of the integral on the left side. It becomes a total derivative
because the definite integral wipes out the x variable. Split up the integral on the right side into
three and evaluate them.

d

dt

ˆ L

0
u(x, t) dx =

ˆ L

0

∂2u

∂x2
dx+

ˆ L

0
x dx− β

ˆ L

0
dx

=
∂u

∂x

∣∣∣∣L
0

+
L2

2
− βL

=
∂u

∂x
(L, t)︸ ︷︷ ︸
= 0

− ∂u
∂x

(0, t)︸ ︷︷ ︸
= 0

+
L2

2
− βL

=
L2

2
− βL

= 0

Integrate both sides with respect to t.

ˆ L

0
u(x, t) dx = constant

As a result, the integral of u over the rod’s length is the same at any time, including at
equilibrium. ˆ L

0
u(x, 0) dx =

ˆ L

0
u(x,∞) dx = constant

Substitute the prescribed initial condition into the integrand on the left side and the equilibrium
temperature distribution into the right side.

ˆ L

0
f(x) dx =

ˆ L

0

(
L

4
x2 − x3

6
+ C6

)
dx

We now have an equation for C6. Proceed to evaluate the integral and solve for it.

ˆ L

0
f(x) dx =

L4

12
− L4

24
+ C6L

So then

C6 =
1

L

[
−L

4

24
+

ˆ L

0
f(x) dx

]
= −L

3

24
+

1

L

ˆ L

0
f(x) dx.

Therefore, assuming β = L/2, the equilibrium temperature distribution is

u(x) =
L

4
x2 − x3

6
− L3

24
+

1

L

ˆ L

0
f(x) dx.
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