Exercise 1.4.7

For the following problems, determine an equilibrium temperature distribution (if one exists). For what values of β are there solutions? Explain physically.
(a) $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+1, \quad u(x, 0)=f(x), \quad \frac{\partial u}{\partial x}(0, t)=1, \quad \frac{\partial u}{\partial x}(L, t)=\beta$
(b) $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad u(x, 0)=f(x), \quad \frac{\partial u}{\partial x}(0, t)=1, \quad \frac{\partial u}{\partial x}(L, t)=\beta$
(c) $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+x-\beta, \quad u(x, 0)=f(x), \quad \frac{\partial u}{\partial x}(0, t)=0, \quad \frac{\partial u}{\partial x}(L, t)=0$

Solution

The rod in (a) has constant physical properties and a constant heat source $Q=1$. The heat flow is specified at its ends, and it has an initial temperature distribution $u(x, 0)=f(x)$. The rod in (b) has constant physical properties and no heat source. The heat flow is specified at its ends, and it has an initial temperature distribution $u(x, 0)=f(x)$. The rod in (c) has constant physical properties and a steady heat source $Q(x)=x-\beta$. The ends are insulated, and it has an initial temperature distribution $u(x, 0)=f(x)$.

Part (a)

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$
0=\frac{d^{2} u}{d x^{2}}+1 \quad \rightarrow \quad \frac{d^{2} u}{d x^{2}}=-1
$$

This differential equation can be solved by integrating both sides with respect to x twice. After the first integration, we get

$$
\frac{d u}{d x}=-x+C_{1} .
$$

Apply the boundary conditions at $x=0$ and $x=L$ to determine C_{1} and β.

$$
\begin{aligned}
& \frac{d u}{d x}(0)=C_{1}=1 \\
& \frac{d u}{d x}(L)=-L+C_{1}=\beta
\end{aligned}
$$

In order for there to be an equilibrium temperature distribution, β must be equal to $1-L$.

$$
\frac{d u}{d x}=-x+1
$$

Integrate both sides with respect to x once more.

$$
u(x)=-\frac{x^{2}}{2}+x+C_{2}
$$

The final constant can be found by integrating both sides of the PDE over the rod's length from 0 to L.

$$
\int_{0}^{L} \frac{\partial u}{\partial t} d x=\int_{0}^{L}\left(\frac{\partial^{2} u}{\partial x^{2}}+1\right) d x
$$

Bring the time derivative in front of the integral on the left side. It becomes a total derivative because the definite integral wipes out the x variable. Split up the integral on the right side into two and evaluate them.

$$
\begin{aligned}
\frac{d}{d t} \int_{0}^{L} u(x, t) d x & =\int_{0}^{L} \frac{\partial^{2} u}{\partial x^{2}} d x+\int_{0}^{L} d x \\
& =\left.\frac{\partial u}{\partial x}\right|_{0} ^{L}+L \\
& =\underbrace{\frac{\partial u}{\partial x}(L, t)}_{=\beta}-\underbrace{\frac{\partial u}{\partial x}(0, t)}_{=1}+L \\
& =\beta-1+L \\
& =0
\end{aligned}
$$

Integrate both sides with respect to t.

$$
\int_{0}^{L} u(x, t) d x=\text { constant }
$$

As a result, the integral of u over the rod's length is the same at any time, including at equilibrium.

$$
\int_{0}^{L} u(x, 0) d x=\int_{0}^{L} u(x, \infty) d x=\text { constant }
$$

Substitute the prescribed initial condition into the integrand on the left side and the equilibrium temperature distribution into the right side.

$$
\int_{0}^{L} f(x) d x=\int_{0}^{L}\left(-\frac{x^{2}}{2}+x+C_{2}\right) d x
$$

We now have an equation for C_{2}. Proceed to evaluate the integral and solve for it.

$$
\int_{0}^{L} f(x) d x=-\frac{L^{3}}{6}+\frac{L^{2}}{2}+C_{2} L
$$

So then

$$
\begin{aligned}
C_{2} & =\frac{1}{L}\left[\frac{L^{3}}{6}-\frac{L^{2}}{2}+\int_{0}^{L} f(x) d x\right] \\
& =\frac{L^{2}}{6}-\frac{L}{2}+\frac{1}{L} \int_{0}^{L} f(x) d x .
\end{aligned}
$$

Therefore, assuming $\beta=1-L$, the equilibrium temperature distribution is

$$
u(x)=-\frac{x^{2}}{2}+x+\frac{L^{2}}{6}-\frac{L}{2}+\frac{1}{L} \int_{0}^{L} f(x) d x .
$$

Part (b)

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$
0=\frac{d^{2} u}{d x^{2}}
$$

This differential equation can be solved by integrating both sides with respect to x twice. After the first integration, we get

$$
\frac{d u}{d x}=C_{3}
$$

Apply the boundary conditions at $x=0$ and $x=L$ to determine C_{3} and β.

$$
\begin{gathered}
\frac{d u}{d x}(0)=C_{3}=1 \\
\frac{d u}{d x}(L)=C_{3}=\beta
\end{gathered}
$$

In order for there to be an equilibrium temperature distribution, β must be equal to 1 .

$$
\frac{d u}{d x}=1
$$

Integrate both sides with respect to x once more.

$$
u(x)=x+C_{4}
$$

The final constant can be found by integrating both sides of the PDE over the rod's length from 0 to L.

$$
\int_{0}^{L} \frac{\partial u}{\partial t} d x=\int_{0}^{L} \frac{\partial^{2} u}{\partial x^{2}} d x
$$

Bring the time derivative in front of the integral on the left side. It becomes a total derivative because the definite integral wipes out the x variable. Evaluate the right side.

$$
\begin{aligned}
\frac{d}{d t} \int_{0}^{L} u(x, t) d x & =\left.\frac{\partial u}{\partial x}\right|_{0} ^{L} \\
& =\underbrace{\frac{\partial u}{\partial x}(L, t)}_{=\beta}-\underbrace{\frac{\partial u}{\partial x}(0, t)}_{=1} \\
& =\beta-1 \\
& =0
\end{aligned}
$$

Integrate both sides with respect to t.

$$
\int_{0}^{L} u(x, t) d x=\text { constant }
$$

As a result, the integral of u over the rod's length is the same at any time, including at equilibrium.

$$
\int_{0}^{L} u(x, 0) d x=\int_{0}^{L} u(x, \infty) d x=\text { constant }
$$

Substitute the prescribed initial condition into the integrand on the left side and the equilibrium temperature distribution into the right side.

$$
\int_{0}^{L} f(x) d x=\int_{0}^{L}\left(x+C_{4}\right) d x
$$

We now have an equation for C_{4}. Proceed to evaluate the integral and solve for it.

$$
\int_{0}^{L} f(x) d x=\frac{L^{2}}{2}+C_{4} L
$$

So then

$$
\begin{aligned}
C_{4} & =\frac{1}{L}\left[-\frac{L^{2}}{2}+\int_{0}^{L} f(x) d x\right] \\
& =-\frac{L}{2}+\frac{1}{L} \int_{0}^{L} f(x) d x
\end{aligned}
$$

Therefore, assuming $\beta=1$, the equilibrium temperature distribution is

$$
u(x)=x-\frac{L}{2}+\frac{1}{L} \int_{0}^{L} f(x) d x .
$$

Part (c)

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$
0=\frac{d^{2} u}{d x^{2}}+x-\beta \quad \rightarrow \quad \frac{d^{2} u}{d x^{2}}=\beta-x
$$

This differential equation can be solved by integrating both sides with respect to x twice. After the first integration, we get

$$
\frac{d u}{d x}=\beta x-\frac{x^{2}}{2}+C_{5} .
$$

Apply the boundary conditions at $x=0$ and $x=L$ to determine C_{5} and β.

$$
\begin{aligned}
& \frac{d u}{d x}(0)=C_{5}=0 \\
& \frac{d u}{d x}(L)=\beta L-\frac{L^{2}}{2}+C_{5}=0 \quad \rightarrow \quad \beta=\frac{L}{2}
\end{aligned}
$$

In order for there to be an equilibrium temperature distribution, β must be equal to $L / 2$.

$$
\frac{d u}{d x}=\frac{L}{2} x-\frac{x^{2}}{2}
$$

Integrate both sides with respect to x once more.

$$
u(x)=\frac{L}{4} x^{2}-\frac{x^{3}}{6}+C_{6}
$$

The final constant can be found by integrating both sides of the PDE over the rod's length from 0 to L.

$$
\int_{0}^{L} \frac{\partial u}{\partial t} d x=\int_{0}^{L}\left(\frac{\partial^{2} u}{\partial x^{2}}+x-\beta\right) d x
$$

Bring the time derivative in front of the integral on the left side. It becomes a total derivative because the definite integral wipes out the x variable. Split up the integral on the right side into three and evaluate them.

$$
\begin{aligned}
\frac{d}{d t} \int_{0}^{L} u(x, t) d x & =\int_{0}^{L} \frac{\partial^{2} u}{\partial x^{2}} d x+\int_{0}^{L} x d x-\beta \int_{0}^{L} d x \\
& =\left.\frac{\partial u}{\partial x}\right|_{0} ^{L}+\frac{L^{2}}{2}-\beta L \\
& =\underbrace{\frac{\partial u}{\partial x}(L, t)}_{=0}-\underbrace{\frac{\partial u}{\partial x}(0, t)}_{=0}+\frac{L^{2}}{2}-\beta L \\
& =\frac{L^{2}}{2}-\beta L \\
& =0
\end{aligned}
$$

Integrate both sides with respect to t.

$$
\int_{0}^{L} u(x, t) d x=\text { constant }
$$

As a result, the integral of u over the rod's length is the same at any time, including at equilibrium.

$$
\int_{0}^{L} u(x, 0) d x=\int_{0}^{L} u(x, \infty) d x=\text { constant }
$$

Substitute the prescribed initial condition into the integrand on the left side and the equilibrium temperature distribution into the right side.

$$
\int_{0}^{L} f(x) d x=\int_{0}^{L}\left(\frac{L}{4} x^{2}-\frac{x^{3}}{6}+C_{6}\right) d x
$$

We now have an equation for C_{6}. Proceed to evaluate the integral and solve for it.

$$
\int_{0}^{L} f(x) d x=\frac{L^{4}}{12}-\frac{L^{4}}{24}+C_{6} L
$$

So then

$$
\begin{aligned}
C_{6} & =\frac{1}{L}\left[-\frac{L^{4}}{24}+\int_{0}^{L} f(x) d x\right] \\
& =-\frac{L^{3}}{24}+\frac{1}{L} \int_{0}^{L} f(x) d x
\end{aligned}
$$

Therefore, assuming $\beta=L / 2$, the equilibrium temperature distribution is

$$
u(x)=\frac{L}{4} x^{2}-\frac{x^{3}}{6}-\frac{L^{3}}{24}+\frac{1}{L} \int_{0}^{L} f(x) d x
$$

